Synthesis and Spectroscopic Characterization of Iron Complexes with Bidentate Schiff's Base Ligands Derived from 2-Benzoylpyridine, 2-Benzoylthiophene and Thiosemicarbazone, Semicarbazone, and their Biological Activity

Meenakshi Gupta^{1*}, Bhupendra Kumar Sarma¹, S. Chandra², Sangeeta Gupta³, Sanjay Singhal³

¹Department of Chemistry, Mewar University, Gangrar, Rajasthan, India, ²Department of Chemistry, Zakir Hussain Delhi College, University of Delhi, JLN Marg, New Delhi, India, ³Department of Microbiology, ESI Hospital, Basai, Darapur, New Delhi, India

ABSTRACT

Objective: The objective of this study is to synthesize and characterize Schiff's base ligands and their iron complexes and to study their antimicrobial activity.

Materials and Method: The Schiff's base ligands and their complexes were prepared by reflux method for 7–8 h. In each case, pH was adjusted as per the requirement. Ethyl alcohol was used as solvent. Ligand 1 was highly soluble in water, and its complexes were prepared in water. Round bottom flask (100 mL), condenser, and heating mental were used as apparatus.

Result: The complexes of Fe(III) and Fe(II) having the general composition FeL²X³ (where L = 2-benzoylpyridine thiosemicarbazone (L¹), 2-benzoylpyridine semicarbazone (L²), and 2-benzoylthiophene semicarbazone (L³) and X = Cl⁻, NO₃⁻, $\frac{1}{2}SO_4^{-2}$) have been synthesized and were characterized by infrared, elemental analysis, magnetic susceptibility, ultraviolet-visible, conductivity, mass spectrometry, and electron paramagnetic resonance spectral studies. On the basis of molar conductance value which was determined using dimethyl sulfoxide as a solvent it can be concluded that all the complexes were 1:1 electrolytic in nature. The value of magnetic moment indicates that all the complexes are of high spin type. On the basis of spectral studies, an octahedral geometry has been proposed for Fe(II) and Fe(III) complexes. The complexes under study were investigated for antifungal (i.e., *Candida krusei* and *Candida persapolis*) and antibacterial (i.e., *Escherichia coli* and *Staphylococcus*) activity.

Conclusion: The synthesized ligands were bidentate, and complexes were found more active toward antimicrobial activity than ligands.

Key words: Electron paramagnetic resonance, infrared, mass, nuclear magnetic resonance, semicarbazone, thiosemicarbazone

INTRODUCTION

Metal complexes with thiosemicarbazone and semicarbazone ligands drag the attention of scientists for their wide range of biological activities^[1,2] including antibacterial,^[3] antiulcer activity,^[4] anti-inflammatory agent,^[5] biological oxygen carrying system,^[6] and their application in analytical field^[7]. Sulfur and nitrogen donor atoms present in Schiff's base ligands act as chelating agent for the transition and non-transition metal ions.^[8] Coordination of these compounds with metal ions such as iron enhances their activities^[9] as observed in case of pathogenic fungi.^[10] In the light of above applications, the present work depicts the result of our investigations on the synthesis, characterization, and antimicrobial studies of iron complexes of Schiff's base ligands.

*Corresponding author: Email: meenakshigupta294@gmail.com ISSN 2320-138X © 2018

Experimental Section

All reagents were commercially available and used without purification purchased from Sigma Aldrich, and metal salts were purchased from E. Merck. Solvents were spectroscopic pure or purified by conventional method.

Preparation of Ligand (L¹)

Thiosemicarbazide (0.091 g, 0.01 mol) was dissolved in minimum quantity of ethanol. To this solution, hot ethanolic solution of 2-benzoylpyridine (0.18 g, 0.01 mol) was added very slowly with constant stirring. The resulting solution was refluxed at 78–80°C for 8 h, and the pH was adjusted to approximately 4–5 using acetic acid (according to Scheme 1). On cooling, bright yellow-colored crystals were separated out. These crystals were washed out several times with cold ethanol. The ligand is highly soluble in water.

Preparation of Ligand (L²)

Semicarbazide (0.11 g, 0.01 mol) and sodium acetate (0.11 g, 0.01 mol) were dissolved in a little amount of

distilled water and added to an alcoholic solution of 2-benzoylpyridine (0.36 g, 0.02 mol) with constant stirring and refluxed for 7–8 h at 78–80°C according to Scheme 2. The resultant solution was cooled for 24 h. On cooling, white shiny crystals were separated out which were washed with ethanol and ether several times to remove excessive reactant and dried over P_AO10 .

Preparation of Ligand (L³)

Thiosemicarbazide (0.91 g, 0.01 mol) was dissolved in minimum quantity of ethanol. To this solution, hot ethanolic solution of 2-benzoylthiophene (0.01 mol) was added very slowly with constant stirring. The resulting solution was refluxed at 78–80°C for 6 h, and the pH was adjusted to 4–5 using acetic acid (according to Scheme 3). On cooling, bright light yellow-colored crystals were separate out. These crystals were washed out several times with cold ethanol and dry ether several times to remove excessive reactant and dried over P_4O_{10} .

Preparation of Transition Metal Complexes with Ligand (L¹)

Hot aqueous solution (20 mL) of corresponding metal salts (0.01 mol) was mixed with hot aqueous solution of the ligand (0.02 mol) with constant stirring and refluxed for 7–8 h at 65–70°C. On cooling the contents, the colored precipitates were separated out in each case. It was filtered and washed with ethanol and ether. The resultant mixture was dried over P_AO10 .

Preparation of Transition Metal Complexes With Ligand $(L^2 \text{ and } L^3)$

Hot ethanolic solution (20 mL) of corresponding metal salts (0.01 mol) was mixed with hot ethanolic solution of the ligand (0.02 mol) with constant stirring and refluxed for 7–8 h at 78–80°C. On cooling the contents, the colored precipitates were separated out in each case. It was filtered and washed with ethanol and ether. The resultant mixture was dried over $P_a O_{10}$.

Analytical and Physical Measurement

Elemental (CHN) analysis was carried out on a Perkin-Elmer series-II-2400. Infrared (IR) was recorded using a Thermo Scientific Nicolet 6700 Fourier-transform IR (FT-IR) on KBr disc in the wave number ranged 4000–400 cm⁻¹. Mass spectrum was recorded using Bruker microtof-QII. 1H nuclear magnetic resonance (NMR) spectra were recorded on Bruker advanced DPX-300 spectrometer using dimethyl sulfoxide (DMSO)-d6 as a solvent and tetramethylsilane as an internal solvent. Electronic spectral studies were conducted on a Perkin-Elmer-lambda 25, ultraviolet (UV) spectrophotometer.

RESULTS AND DISCUSSION

Ligand (L³)

All the iron (III) and iron (II) complexes were synthesized by condensation reaction between ligands and corresponding metal salts. All complexes were synthesized at 6–7pH range. The synthesized complexes were colored and stable at room temperature and were found to be soluble

Scheme 3: Synthesis of ligand 3

2-BenzoyIthiophene

Thiosemicarbazide

in DMSO and DMF. The molar conductivity value lies in the range from 70 to 80 (ohm⁻¹ cm² mol⁻¹) which indicates 1:1 electrolytic nature. On the basis of elemental analysis, the complexes were found to have general composition FeL_2X_3 , where L = L¹, L², and L³ and X = Cl⁻ and NO₃⁻. All complexes and ligands were found to be biologically active toward test fungi and bacteria. Complexes were found to be more biologically active than ligands. Copper complexes showed maximum antifungal and antibacterial activity in comparison to all other metals. The results obtained from antimicrobial susceptibility testing are depicted in Table 1.

¹H NMR of Ligand (L¹, L², and L³)

¹H NMR of ligands (L¹, L², and L³) was done in DMSO on 44–300 MHz NMR. In ¹H NMR of ligands (L¹ and L³) [Figure 1], the aromatic proton appears as a set of singlet,

doublet, and multiplet in the range 7.40–8.78 ppm. The singlet for NH proton appears at 9.32 ppm, while two NH_2 protons resonate as a multiplet at 7.34–7.38 ppm. The NH_2 and NH protons are confirmed by their D_2O spectra. All the protons are found in their expected region.

Mass Spectra of Ligand (L¹, L², and L³)

Mass spectra of the ligands [Figure 2] give the important information regarding the proposed formula of the synthesized compounds. Mass spectra of ligands L¹, L², and L³ show a molecular ion peak at m/z = 255, 239, and 259 amu corresponding to species $[C_{13}H_{11}N_4S]^+$, $[C_{13}H_{11}N_4O]^+$ and $[C_{13}H_{12}N_3SO]^-$, respectively. The peak at m/z = 255, 239, and 259 amu indicates M+1, M+1, and M-1 peaks. These values favor the proposed formulae of the ligands under study.

Figure 1: ¹H nuclear magnetic resonance spectrum of ligand (L¹)

Table 1: Color, melting point, an	d elemental analyses	s of Fe (III and II) complexes
-----------------------------------	----------------------	---------------------	-------------

Complexes	Color Con	Molar	Melting	g Molecular	Fo	Found (calculated)%		
		Conductance point (°C)	weight found (Calc.)	С	н	Ν		
(Fe[L ¹] ₂ SO ₄)	Green	21	212	745	48.32 (48.56)	4.02 (4.10)	15.03 (15.63)	
$FeC_{26}H_{24}S_{3}N_{8}O_{4}$								
$(Fe[L^{1}]_{2}[NO_{3}]_{2}) NO_{3}$	Black	86	243	754	41.37 (41.87)	3.18 (3.87)	14.85 (14.98)	
$FeC_{26}H_{24}S_{2}N_{10}O_{6}$								
$(Fe[L^1]_2Cl_2) Cl$	Black	98	215	675	46.25 (45.90)	3.55 (3.21)	16.06 (16.98)	
$\rm{FeC}_{26}\rm{H}_{24}\rm{S}_{2}\rm{N}_{8}\rm{Cl}_{2}$								
$(Fe[L^2]_2Cl_2)Cl$	Black	91	204	607	51.4 (51.92)	3.95 (3.97)	18.45 (18.16)	
$FeC_{26}H_{24}O_{2}N_{8}Cl_{2}$								
(Fe[L ²] ₂ [NO ₃] ₂) NO ₃	Black	84	210	660	47.27 (47.10)	3.63 (3.95)	21.21 (21.33)	
$FeC_{26}H_{24}O_8N_{10}$								
(Fe[L ²] ₂ SO ₄)	Green	11.9	219	632	49.36 (49.01)	3.79 (3.68)	17.72 (17.16)	
$FeC_{26}H_{24}O_{6}SN_{8}$								
(Fe[L ³] ₂ Cl ₂) Cl	Yellow brown	76	234	710	43.91 (43.67)	3.37 (3.09)	11.82 (11.43)	

Magnetic Moment

Fe(III) d⁵ case, under weak field of Oh symmetry, the ground state is ${}^{6}A_{1g}(t_{2g}^{3}, e_{g}^{3})$ with S = 5/2 (high spin). Such system exhibits magnetic moment close to spin only value, i.e., 5.92 B.M. In the presence of strong field of Oh symmetry, the ground state is ${}^{2}T_{2g}(t_{2g}^{5}, e_{g}^{0})$ with S = ½ (low spin), and in this case, the magnetic moment is close to 2.0 B.M. Greater than the spin, only value of 1.73 B.M. is due to the small contribution of the orbital angular momentum in the $t_{2\sigma}^{5}$ configuration. The magnetic moment is intermediate to high or low spin values may arise when the ligand field strength is comparable with the mean electronic pairing energy of the d⁵ configuration. In such cases, the two possible ground states ${}^{6}\mathrm{A}_{_{1g}}$ and ${}^{2}\mathrm{T}_{_{2g}}$ are in thermal equilibrium resulting in temperature-dependent variation of magnetic moments between the limiting values of 5.92-2.0 B.M.

IR Spectra

The IR bands of ligands and complexes [Figure 3] were recorded between 4000 and 400 cm⁻¹ as listed in Table 2. A band at 1618 cm⁻¹ in case of ligand 1 (L¹) and 1577 cm⁻¹ in case of ligand 2 (L²) and another band at 1598 cm⁻¹ in case of ligand 3 (L³) correspond to v(C=N) azomethine group.^[11]

The band at 781 cm⁻¹ and 837 cm⁻¹ may be assigned to $v(C=S)^{[12]}$ group, and the band at 1660 cm⁻¹ corresponds to v(C=O) carbonyl group. In IR of complexes, these values are shifted toward lower side from 10 to 45 cm⁻¹. This indicates that both v(C=N) and v(C=S) in ligand 1 and 3 and v(C=O) group and v(C=N) of ligand 2 are coordinated to central metal ion in complex formation [Figure 3]. The coordination of v(C=N) group is further supported by appearance of new v(M-N) band which appeared in the region from 409 to 553 cm^{-1[13]} and v(M-O) band which appeared in the region from 504 to 553 cm^{-1.[14]} Thus, all the ligands are bidentate and ligand 1 and 3 coordinated through nitrogen and sulfur with central metal ion, whereas ligand 2 (L²) coordinated through nitrogen and oxygen.

IR Bands Due to Anion

The IR spectra of nitrato complexes iron (III) of ligand 1 and 2 (L¹ and L²) show three bands at 1412–1425(v_s), 1313–1315, and 1203–1215(v₁).^[15] The difference in v_s and v₁ is 209 and 210 cm^{-1[16-18]} suggesting monodentate behavior of nitrate group in both the complexes of ligand (L¹ and L²). IR bands of sulfato complexes of iron suggest the bidentate coordination. All the values are listed in Tables 3 and 4.

Figure 2: Mass spectrum of ligand (L1)

Figure 3: Infrared spectrum of (Fe[L²]₂[NO₃]₂)NO₃

Electronic Spectra

Iron (III) is isoelectronic with Mn(II), but the electronic spectral characterization of iron (III) is less, because of much greater tendency of the trivalent ion to have charge transfer bands in the near UV region with strong low energy wings in the visible that obscure the very weak, spin forbidden d-d bands. The spectra of Fe(III) complexes generally exhibit a small number of fairly broadband rather than the series of narrow bands expected. Electronic spectra of Fe(III) complexes exhibit three bands of varying intensities [Figure 4] in the region of 21150–22350 [v.],

Table 2: Important IR spectral bands (cm	n ⁻¹) and their assignments
--	---

Complexes	V (C=O)	V (C=N)	V (C=S)	V (M-N)	V (M-O)
Ligand 1	-	1618	781	-	-
$(Fe[L_1]_2Cl_2)$	-	1602	749	421	-
(Fe[L1]2[SO4])	-	1591	748	409	-
$(Fe[L_2^1][NO_3]_2)$	-	1583	745	446	-
Ligand 2	1577	1660	-	-	-
$(Fe[L^2]_2Cl_2)$	1560	1630	-	-	556
$(Fe[L^2]_2[NO_3]_2)$	1551	1622	-	-	554
(Fe[L ²] ₂ [SO ₄])	1550	1619	-	-	551
Ligand 3		1599	814		
		1578	814		425

Table 3: Important IR spectral bands (cm ,) due to anions

24370–25500 [v2], and 26789–27767 [v3] cm⁻¹, but the assignments of bands are difficult.^[19] It is very unlikely that the spectra of Fe(III) derivatives, which are more covalent those of manganese(II), can be described in terms of B and C.

Antimicrobial Activity

All the synthesized compounds were tested for their antibacterial and antifungal activity (minimum inhibitory concentration [MIC]) in vitro by broth dilution method^[20] with two Gram-positive bacteria Staphylococcus aureus, one Gram-negative bacteria Escherichia coli, and two fungal strains Candida parapsilosis and Candida krusei. The MIC values for all the newly synthesized compounds, defined as the lowest concentration of the compound preventing the visible growth, were determined using microdilution broth method. Serial dilutions of the test compounds and biological activities of ligands and their metal complexes were prepared in Mueller-Hinton agar. Drugs (0.005, 0.050, and 0.500 mg) were dissolved in DMSO, 1 mL. 0.5 McFarland solution of E. coli, S. aureus, and C. parapsilosis and C. krusei was prepared and applied on Mueller-Hinton agar contained in a Petri plate with the help of sterilized swab. Then, 10 µL solution of concentration (0.005, 0.050, and 0.500 mg) in 1 mL DMSO

Complexes	V1	V2	V3	V5-V1	Results
Ligand 1	-	-	-	-	-
(Fe[L ¹] ₂ Cl ₂) Cl	-	-	-	-	-
$(Fe[L^1]_2[SO_4])$	1131	1042	950		Unidentate sulfate
$(Fe[L_{2}^{1}][NO_{3}]_{2}) NO_{3}$	1419	1338	1203	216	Unidentate nitrate
Ligand 2					
(Fe[L ²] ₂ Cl ₂)	-	-	-	-	-
(Fe[L ²] ₂ [NO ₃]NO ₃	1428	1395	1201	218	Unidentate nitrate
(Fe[L ²] ₂ [SO ₄])	1133	954	419		Unidentate sulfate
(Fe[L ³ ₂]Cl ₂) Cl	-	-	-	-	-

Figure 4: Ultraviolet spectrum of (Fe[L¹]₂[NO₃]₂)NO₃

Table 4: Electronic spectral bands (cm⁻¹) and magnetic moment (B.M.) of Fe (III) complexes

Complexes	Spectral bands in (cm ⁻¹)	μ eff
(Fe[L ¹] ₂ Cl ₂) Cl	9832, 11086, 10,952, 15, 174, 17, 241, 28, 761	4.96
(Fe[L ¹][SO ₄])	10, 449, 11, 098, 15, 847, 26, 041, 32, 981	4.87
(Fe[L ¹ ₂][NO ₃] ₂) NO ₃	11, 627, 14, 265, 15, 174, 17, 182, 26, 041	4.56
(Fe[L ²] ₂ Cl ₂) Cl	11, 574, 14, 867, 15, 987, 17, 281,32, 154	4.67
(Fe[L ²] ₂ [NO ₃] ₂) NO ₃	9, 876, 12, 345, 15, 678, 18654, 33, 452	4.98
(Fe[L ²][SO ₄])	9871, 10, 234, 21, 098, 32, 897	4.75
(Fe[L ³] ₂ [Cl] ₂) Cl	10, 698, 14, 678, 15, 653, 17, 890, 31, 256	4.58

Table 5: Antibacterial screening results of ligand 1 and its complexes

Name	Concentrations (µg)	<i>E. coli</i> diameter (mm)	<i>S. aureus</i> diameter (mm)
Ligand 1	0.005	NA	10
	0.050	10	14
	0.500	14	17
L1FeCl3	0.005	NA	NA
	0.050	18	24
	0.500	26	29
L ₁ FeNO ₃	0.005	NA	NA
	0.015	12	14
L2	0.005	10	NA
	0.050	14	14
	0.500	18	15
L ₂ FeCl ₃	0.005	NA	NA
	0.050	12	12
	0.500	13	15
L ₂ FeNO ₃	0.005	NA	NA
	0.050	19	21
	0.500	21	23
L ₃	0.005	NA	10
	0.050	10	12
	0.500	13	18
L ₃ FeSO ₄	0.005	R	R
	0.050	23	15

E. coli: Escherichia coli, S. aureus: Staphylococcus aureus

was dropped on it with the help of micropipette. This Petri plate was incubated for 24 h at 22 \pm 29°C. The growth of fungi and bacteria was measured diametrically. The values are listed in Tables 5 and 6.

To ensure that the solvent had no effect on the bacterial growth, a control was performed with the test medium supplemented with DMSO at the same dilutions as used in the experiments and it was observed that DMSO had no effect on the microorganisms in the concentrations studied [Figure 5].

CONCLUSION

The antimicrobial screening of all investigated compounds provided information about the biological activity of ligands and its complexes which is important in model compounds study. Thus, on the basis of magnetic susceptibility, molar conductance measurement, IR, and electronic spectral studies and the subsequent discussion for the complexes given above, the following structure may be proposed for these complexes.

Scheme 4: Structure of complexes under study

Name	Concentrations (µg)	<i>C. krusei</i> diameter (mm)	C. parapsilosis diameter (mm)
Ligand 1	0.005	10	R
	0.050	15	10
	0.500	17	17
L_1FeCl_3	0.005	NA	10
	0.050	22	17
	0.500	24	21
L ₁ FeNO ₃	0.005	NA	NA
	0.015	10	18
L ₂	0.005	NA	NA
	0.050	10	10
	0.500	14	12
L ₂ FeCl ₃	0.050	10	11
	0.500	16	13
L ₂ FeNO ₃	0.050	12	11
	0.500	18	16
L ₃	0.005	10	10
	0.050	12	10
	0.500	15	12
$L_{3}FeSO_{4}$	0.005	NA	NA
	0.050	12	10

Table 6: Antifungal screening results of ligand 1and its complexes

C. krusei: Candida krusei, C. parapsilosis: Candida parapsilosis

Figure 5: (a-d) Antibacterial and antifungal activity of complexes under study

ACKNOWLEDGMENT

The author is thankful to Principal of Zakir Hussain Delhi College for providing laboratory facility. We also express our sincere gratitude to IIT Delhi for recording IR, Mass, NMR, and elemental analysis, IIT Mumbai for recording electron paramagnetic resonance, and ACBR of Delhi University for recording UV. The authors are thankful to ESI Hospital for providing laboratory facility and financial assistance.

REFERENCES

- Chandra S, Raizada S, Tyagi M, Gautam A. Synthesis, spectroscopic, and antimicrobial studies on bivalent nickel and copper complexes of bis (thiosemicrbazone). Bioinorg Chem Appl 2007;2007:51483.
- Kovala-Demertzi D, Domopoulou A, Demertzis MA, Valle G, Papageorgio A. Palladium (II) complexes of 2-acetylpyridine N (4)-methyl, N (4)-ethyl and N (4)-phenyl-thiosemicarbazones. Crystal structure of chloro (2-acetylpyridine N (4)-methylthiosemicarbazonato) palladium (II). Synthesis, spectral studies, *in vitro* and *in vivo* antitumour activity. J lnorg Biochem 1997;68:147; (b) Furniss BS. In: Furniss BS, Hannaford AJ, Smith PW, Tatchell AR, editors. Vogel's Text Book Practical Organic Chemistry. London: Longman; 1989.
- Chandra S, Vandana. Synthesis, spectroscopic, anticancer and antibacterial studies of Ni (II) and Cu (II) complexes with 2-carboxybenzaldehyde thiosemicarbazone. Spectrochim Acta A Mol Biomol Spectrosc 2014;129:333.
- Tverdova NV, Pelevina ED, Giricheva NI, Girichev GV, Kuzmina NP, Kutova OV. Molecular structures of 3d metal complexes with various schiff bases studied by gas-phase electron diffraction and quantum-chemical calculations. J Mol Struct 2012;1012:151-61.
- Pathak PV, Jolly S, Sharma KP. Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Orient J Chem 2000;16:161-7.
- Halve A, Samadhiya A. Synthesis and crystal structure of 2-(2,3,4-trimethoxy-6-methylbenzyl ideneamino) phenol. Orient J Chem 2001;17:87-8.
- Sadeek SA, El-Attar MS. Preparation and characterization of new tetradentate Schiff base metal complexes and biological activity evaluation. J Mol Struct 2013;1051:30-40.
- Shakir M, Abbasi A, Azam M, Khan AU. Synthesis, spectroscopic studies and crystal structure of the schiff base ligand L derived from condensation of 2-thiophenecarboxaldehyde and 3,3'-diaminobenzidine and its complexes with co(II), ni(II), cu(II), cd(II) and hg(II): Comparative DNA binding studies of L and its co(II), ni(II) and cu(II) complexes. Spectrochim Acta A Mol Biomol Spectrosc 2011;79:1866-75.
- Sheikh RA, Wani MY, Shreaz S, Hashmi AA. Synthesis, characterization and biological screening of some Schiff base macrocyclic ligand based transition metal complexes as antifungal. Arab J Chem 2016;9:S743-51.
- 10. Rana A, Dinda R, Sengupta P, Ghosh S, Falvello LR.

Synthesis, characterisation and crystal structure of *cis*dioxomolybdenum(VI) complexes of some potentially pentadentate but functionally tridentate (ONS) donor ligands. Polyhedron 2002;21:1023-30.

- Ali MA, Mirza AH, Butcher RJ, Bernhardt PV, RezaulKarim M. Self-assembling dicopper(II) complexes of di-2pyridyl ketone Schiff base ligands derived from S-alkyldithiocarbazates. Polyhedron 2011;30:1478-86.
- Raman N, Raja SJ, Sakthivel A. Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives. J Coord Chem 2009;62:691-709.
- Hosseini-Yazdi SA, Hosseinpour S, Khandar SA, Kassel WS, Nicholas A. Piro,copper(II) and nickel(II) complexes with two new bis(thiosemicarbazone) ligands: Synthesis, characterization, X-ray crystal structures and their electrochemistry behaviour. Inorganica Chim Acta 2015;427:124-30.
- Kumar P, Chandra SA. Synthesis and spectral studies of Mn (II) complexes with 2-heptanone semicarbazone and thiosemicarbazone. Int J Pharm Sci Res 2014;5:2562-8.
- 15. Tyagi M, Chandra S. Synthesis, characterization of biocidal properties of platinum metal complexes derived from 2,6-diacetylpyridine (bis thiosemicarbazone). Open J Inorganic Chem 2012;2:41-8.
- 16. Srivastava AN, Singh NP, Srivastaw CK. *In vitro* antibacterial and antifungal activities of ONNO Schiff's base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation. Arab J Chem 2014;30:30.
- Raj KM, Vivekanand B, Nagesh GY, Mruthyunjayaswamy BH. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligandsncontaining benzo (p) thiophene moiety. J Mol Struct 2014;1059:280-93.
- Chandra S, Gupta LK. Spectroscopic characterization and EPR spectral studies on transition metal complexes with a novel tetradentate, 12 membered macrocyclic ligand. Spectrochim Acta Part A 2006;65:792-6.
- 19. Gupta LK, Bansal U, Chandra S. Spectroscopic and physicochemical studies on Ni (II) complexes of isatin-3,2quinolyl-hydrazones and their adducts. Spectrochim Acta Part A 2007;66:972-5.
- Chandra S, Tyagi M. Ni(II), Pd(II), Pt(II) complexes with ligand containing thiosemicarbazone and semicarbazone moiety: Synthesis, characterization and biological investigation. J Serb Chem Soc 2008;73:727-34.